DECARBONISING INDUSTRY AND THE ICT SECTOR

ENERGY AND CO2 SAVING POTENTIALS IN THE SHORT AND LONGER TERM

#DecarbIndustry #EUSEW2020

Peter Hoedemaker European Industrial Insulation Foundation

Monica Frassoni European Alliance to Save Energy

Antti Valle DG GROW European Commission

Jan Ciampor DG ENER European Commission

Guido Knoche German Environment Agency (UBA)

Andrea Herbst Fraunhofer Institute for Systems and Innovation Research ISI

Andreas Guertler European Industrial Insulation Fondation

Barbara Mariani European Environmental Bureau

Gaël Souchet Schneider Electric

Umwelt 🏟 Bundesamt

Fraunhofer

#DecarbIndustry #EUSEW2020

PRACTICAL INFORMATION

- A Q&A is foreseen after the panel discussion
- Please anticipate your questions in writing using the Q&A tool
- The webinar is recorded and will be made available, together with the slides, on the organizers' websites

#DecarbIndustry #EUSEW2020

DECARBONISING INDUSTRY & THE ICT SECTOR

PETER HOEDEMAKER President European Industrial Insulation Foundation

Welcome

DECARBONISING INDUSTRY & THE ICT SECTOR

ANDREAS GUERTLER Director

European Industrial Insulation Foundation

EiiF Presentation

Decarbonising industry - Energy and CO_2 saving potentials in the short term Saving 6% of industrial CO_2 emissions in Europe through industrial insulation

WE POWER SUSTAINABILITY

The European Industrial Insulation Foundation (EiiF) is a European nonprofit foundation registered in Switzerland in 2009.

The 60+ EiiF members have insulation operations across the world, employ over 70.000 people worldwide and have an aggregated annual turnover of about 14 billion EUR.

ARTICLE 2 - PURPOSE OF THE FOUNDATION

The Foundation engages itself, exclusively and irrevocably, on a non-profit basis for the **deployment of sustainable insulation systems in industrial plants and in the industrial environment with the aim of saving energy, reducing CO₂ emissions [...].**

The primary task of the Foundation is to initiate the implementation of concrete projects.

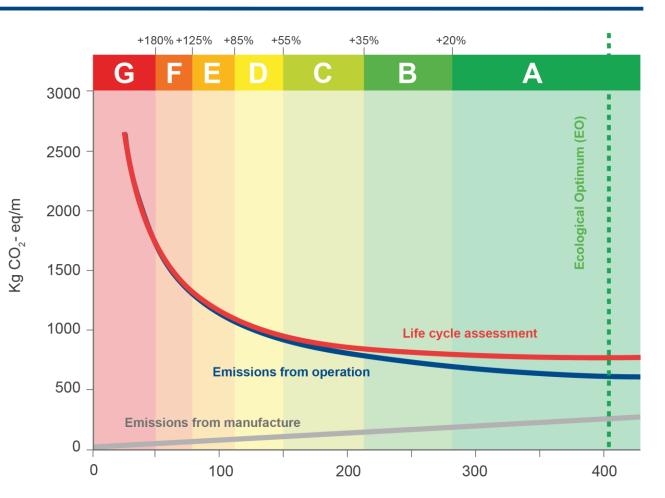
www.eiif.org

EiiF's GREEN DEAL GOAL

Reduce EU's CO₂ emissions by setting standards making insulation in EU 27 industry mandatory with energy performance requirements similar to existing building codes and by promoting insulation inspections.

	POWER PLANT	BUILDING Code (walls) before 2010	BUILDING Code (walls) 2016
TEMPERATURE	250°C	18°C - 22°C	18°C - 22°C
HEAT LOSS	150 W/m² AGI Q101	< 10 W/m² EU average	< 4 W/m² EU average
INSULATION THICKNESS	100 mm	0 - 50 mm	100 - 250 mm

Comparing Building and Industry insulation requirements illustrates the lack of ambition to insulate industry equipment with well performing energy efficient insulation solutions.


The insulation contribution to build a low carbon EU industry

The VDI 4610 Energy Classes are defined by calculating the heat losses in relation to the Ecological Optimum (EO):

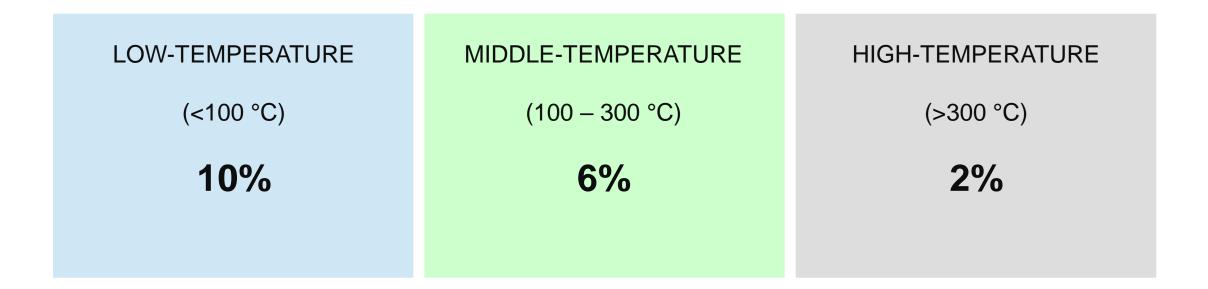
- A = \dots EO \rightarrow +20 %
- $\mathsf{B} = \mathsf{EO} + 21\% \rightarrow +35\%$
- $\textbf{C} \hspace{0.1 cm} = \hspace{0.1 cm} \textbf{EO} \hspace{0.1 cm} + \hspace{-0.1 cm} \textbf{36\%} \rightarrow \hspace{-0.1 cm} + \hspace{-0.1 cm} \textbf{55\%}$
- $\mathsf{D} = \mathsf{EO} + 56\% \rightarrow +85\%$

•••

 $G = EO + 181\% \rightarrow ...$

Insulation layer thickness (mm)

The insulation contribution to build a low carbon EU industry

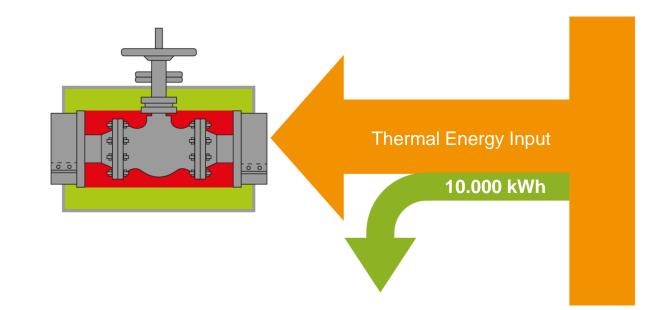

					at 200°C	-			
			Class G	Class F	Class E	Class D	Class C	Class B	Class A
INSULATION THICKNESS		<135 mm	135 mm	174 mm	222 mm	281 mm	345 mm	422 mm	
HEAT FLOW RATE		>83 W/m ²	83 W/m ²	64 W/m ²	50 W/m ²	40 W/m ²	32 W/m ²	26 W/m ²	
SAFETY	EUROPE	Surface temperature 55°C (123 W/m2)							
	SWEDEN	Level medium (45 W/m2)							
COUNTRY	GERMANY	Industry average (56 W/m2)							
BEST	FRANCE	DTU 45.2-2018 (67 W/m2)							
PRACTICE	NETHERLANDS	Energy invest. allowance 2019 (71 W/m2)							
	SPAIN	PNE 92330-2017 (90 W/m2)							

The widely applied insulation design in EU is often only based on the safety requirement to keep surface temperatures below 55 °C.

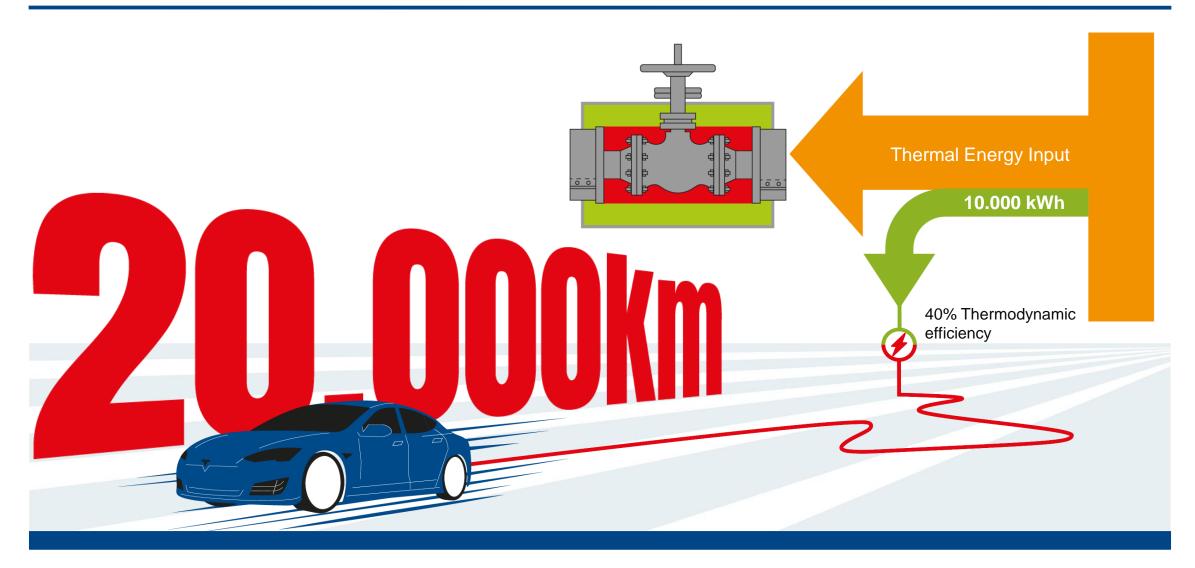
If this **safety solution** is used the **Energy Class** reached is: If **best practice** is applied the best **Energy Class** reached is:

n Europe	G (EO +181%)
n Germany	E (EO +86% \rightarrow +125%)
n Sweden (best in class)	D (EO +56% → +85%)

THE SHARE OF INDUSTRIAL EQUIPMENT WITHOUT INSULATION OR WITH DAMAGED INSULATION



Consequently insulating uninsulated equipment and repairing damaged insulation offers a large CO₂ and energy saving potential with very short simple payback periods (often below one year).


ONE INSULATED INDUSTRIAL VALVE

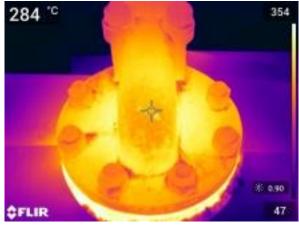
Size: NPS 6 / DN 150 Temperature: 150 °C Operational time: 8.760 hours/year

Energy savings per year:10.000 kWhEnergy loss per year:600 kWh

The Power of Industrial Insulation

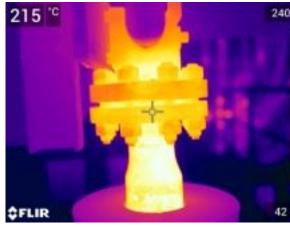
The Power of Industrial Insulation

The insulation contribution to build a low carbon EU industry


	DN	Temperature (in °C)	Losses (in W)	Operational Time (in hours)	Annual Losses (in kWh)	Energy Savings (in kWh)
Valve uninsulated	150	150	1.211	8.760	10.608	-
Valve insulated	150	150	65	8.760	569	10.039
				Thermodynamic Effic	iency	40%
				Electric Energy (in k)	Wh)	4.016
				TESLA Model	Consumption (in kWh/100km)	Mileage (in kilometres)
				S 60	18,1	22.186
				S 70	18,5	21.706
				S 75	18,5	21.706
	1			S 90 D	18,9	21.246
				S P90D	20	20.078
				S 100D	18,9	21.246
				S P100D	20	20.078

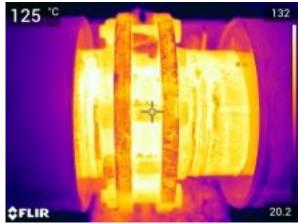
The Typical TIPCHECK Findings

The insulation contribution to build a low carbon EU industry


50 – 150 uninsulated equipment like flanges, valves, heat exchangers, parts of pipes, vessels, manholes and more are typically identified **as hot spots** during a **TIPCHECK** or **TBI Inspection**.

74.5

12.7

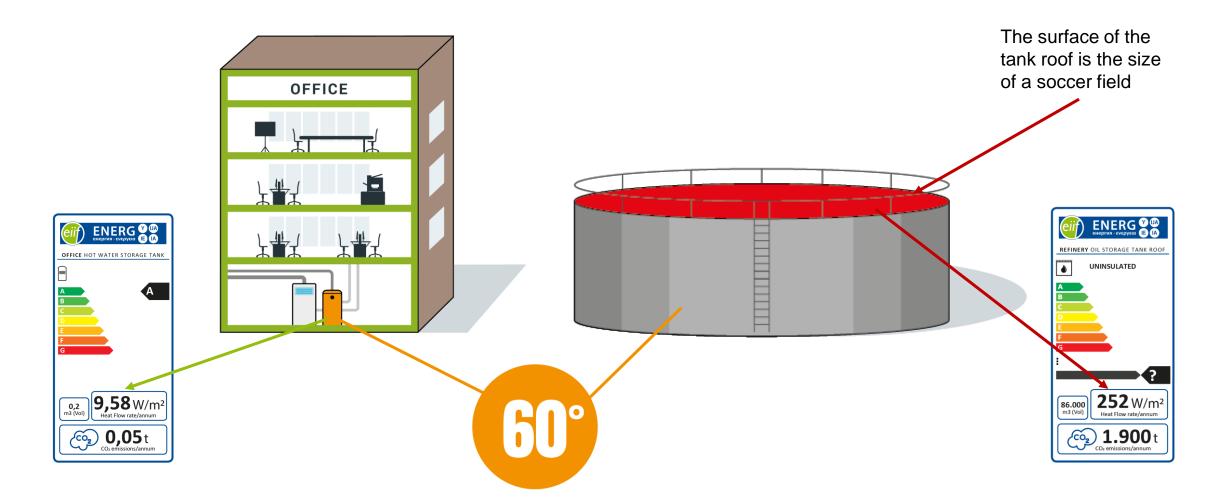

42

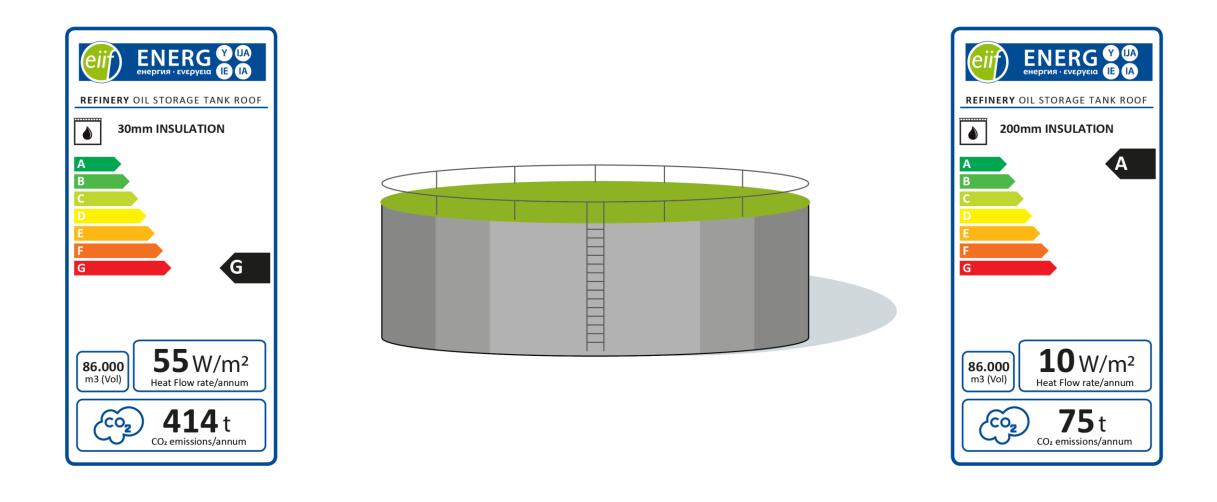
THE NUMBER OF VALVES AND FLANGES IN INDUSTRIAL PLANTS

The number of single components such as valves and flanges which are typically uninsulated and losing heat **is large**.

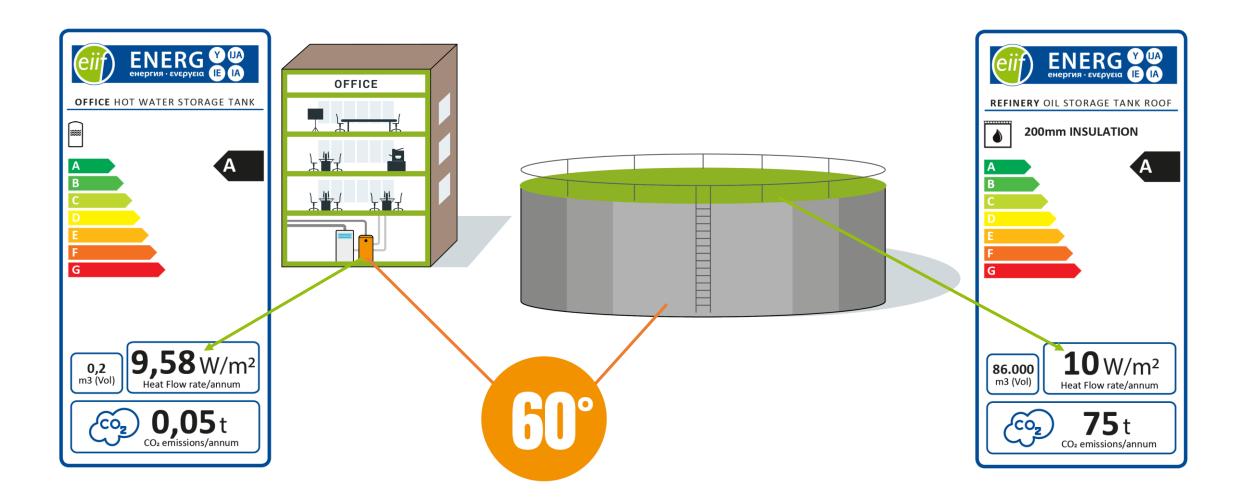
The potential to reduce CO₂ emissions and save energy by insulating these components **is significant and cost effective**.

The payback time of 2 years or less for insulating uninsulated equipment is short.


Component	Service	Count	Total Emissions (EPA August 1995) (lb/hr)	Average Emission Factor (lb/hr/comp)	1980 Refinery (lb/hr/comp)
Valve	HL	28,265	0.8782	3.11E-05	5.07E-04
Fitting	HL	100,482	1.8313	1.82E-05	5.51E-04
Flange	HL	23,370	1.1716	5.01E-05	5.51E-04
Pump	HL	787	0.4364	5.54E-04	4.63E-02
Other	HL	12,077	1.3669	1.13E-04	
PRD	HL	871	0.0984	1.13E-04	
	Total =	165,852			
Refinery C Component	2 data Service	Count	Total Emissions (EPA August 1995) (lb/hr)	Average Emission Factor (lb/hr/comp)	1980 Refinery (lb/hr/comp)
		Count 5,468	(EPA August	Emission Factor	•
Component	Service		(EPA August 1995) (lb/hr)	Emission Factor (lb/hr/comp)	(lb/hr/comp)
Component Valve	Service HL	<mark>5,468</mark>	(EPA August 1995) (lb/hr) 0.8456	Emission Factor (lb/hr/comp) 1.55E-04	(lb/hr/comp) 5.07E-04
Component Valve Fitting	Service HL HL	<mark>5,468</mark> 14,268	(EPA August 1995) (lb/hr) 0.8456 0.2626	Emission Factor (lb/hr/comp) 1.55E-04 1.84E-05	(lb/hr/comp) 5.07E-04 5.51E-04


Table 2-2. Average Emission Factors for Components in Heavy Liquid Service (7 Qtrs. of Refinery C1 Data, 6 Qtrs. of Refinery C2 data, and 2 Qtrs. of Refineries C3 & C4 data)

Source: https://www.api.org/~/media/Files/EHS/Clean_Air/API%20Publication%20337%20-%20HL%20Fugitives.pdf


Comparing Building and Industry

The insulation contribution to build a low carbon EU industry

The insulation contribution to build a low carbon EU industry

The insulation contribution to build a low carbon EU industry

REFINERY – OIL STORAGE TANK ROOF

Insulation (30mm standard material – energy class G: Investment ~400.000 EUR) on the new roof saves annually:

\checkmark	Money:	~230.000 EUR
\checkmark	Energy:	~7.600 MWh
\checkmark	CO _{2:}	~2.000 t

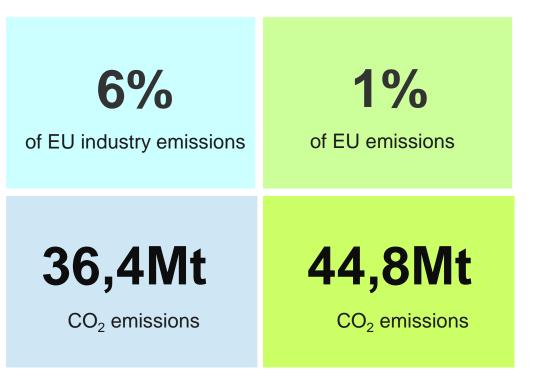
EiiF CO₂ Study 2020

CO₂ REDUCTION POTENTIAL OF INDUSTRIAL INSULATION IN EU 27

EiiF investigated the CO_2 reduction potential of industrial insulation in EU27 based on the VDI 4610 Energy Classes.

Reducing consequently the share of industrial equipment without insulation or with damaged insulation and by improving all insulation systems to **Energy Class C** could deliver annual reductions of:

44,8 Mt of CO₂



CO₂ emissions (Mt) CO₂ reductions (Mt)

According to the latest figures (2018) from the European Environment Agency (EEA) on the annual CO_2 eq. emissions in Europe, industrial insulation could reduce*

- 6% of annual EU industry emissions** (588 Mt)
- 1% of annual EU emissions (3.764 Mt)

*Upgrading to VDI Energy Class C **Industry without Power generation

GLOBAL CLIMATE

• 45 Mt less CO₂ emissions every year

EUROPEAN UNION

- A short term contribution towards net zero in 2050 (Green Deal)
- The chance to create and save jobs in Europe (Green Recovery)

EUROPEAN INDUSTRY

- Smart investments: short payback times (2 years or even less)
- Reduced production costs (reduced energy & CO₂ certificate costs)
- Safer, better working conditions

Contact

European Industrial Insulation Foundation Avenue du Mont-Blanc 33 1196 Gland - Switzerland

Andreas Gürtler Foundation Director

T: +41 22 995 00 - 70 F: +41 22 995 00 - 71 M: +41 78 69 63 662 E: <u>andreas.guertler@eiif.org</u>

www.eiif.org

DECARBONISING INDUSTRY & THE ICT SECTOR

GAEL SOUCHET Senior Product Manager New Energy Storage

Schneider Electric

Growing demand of data centres : the challenge of reducing the energy use of the world's fastest growing industry

Life Is On Schneide

We provide energy and automation digital solutions for efficiency and sustainability

© 2019 Schneider Electric, All Rights Reserved

HAIR DERA'S BERA'S BERA'S BERA'S

コッシンタニ書料 ファクリニック

M

E

S

4 F

穂堂

Digital brings tremendous opportunities to improve efficiency

EcoStruxure

Power

EcoStruxure

Building

More IT as part of OT 24%

of efficiency comes from digital

(OECD/IEA, 2017)

EcoStruxure

IT

EcoStruxure

Machine

EcoStruxure

Plant

Life Is On

EcoStruxure

Grid

Telefonica, Spain

Ensuring a more sustainable and stable data centre

- High reliability
- Low carbon emissions
- Implementing a single system of measurement
- Highly energy efficient

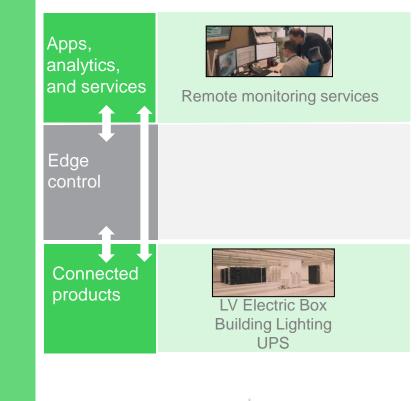
The Solution

- LV Electric Box
- Building Lighting
- UPS
- Control & Supervision of HVAC

Customer Benefits

- Real time monitoring of installation components
- Early detection and quick resolution of downtime
- Reduced energy usage

The Results: Life is On with...


PUE between 1.3 & 1.4

"We chose Schneider Electric as a partner given their reliability and experience, well-established service and system monitoring tools. Our goal is to have zero shutdowns".

Fran Muna, Responsible of Critical Infrastructure, Telefonica Data Centre

Largest data centre in Europe and 3rd largest in the world

Eco Innovation At Every Level For Data Center

Life Is Or

We are also committed to improve sustainability of the digital world

To meet the needs of the digital world and the decarbonization challenge, we have to change the way we deploy and manage IT in the data center, cloud, and at the edge.

© 2019 Schneider Electric, All Rights Reserved | Page 32

How the EU could ensure stronger convergence between sustainability and digital

Schneider Electric | Pag

Promote digital tools to improve sustainability

 Building Management Systems (BMS), Building Information Modelling (BIM), IIoT Platforms

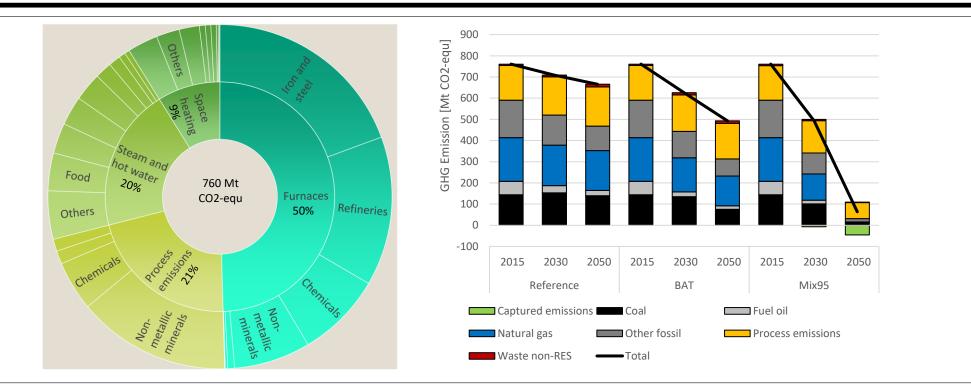
Optimise decarbonized & green data centers

- Better deployment of the EU CoC for data centers ("Power Usage Effectiveness (PUE) targets based on size/age of data centre)
- Enhance interaction with other EU regulations (micro-grid development, green public procurement, use of renewable, use of waste heat, etc.) and promote innovation

A policy framework for digitizing European industry in a sustainable manner

- A EU governance for industry 4.0 with decarbonization at core
- Instigate green strategic value chains (=focus on SMART BUILDINGS)
- Promote education & skills for green jobs

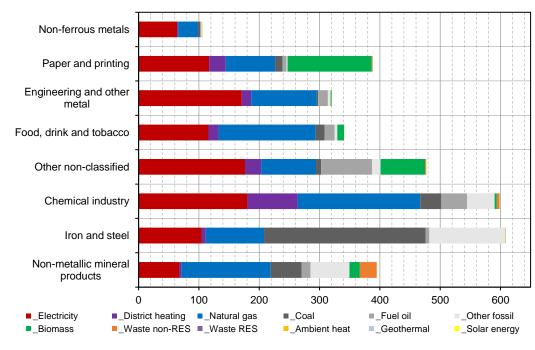
DECARBONISING INDUSTRY & THE ICT SECTOR



ANDREA HERBST Senior Researcher

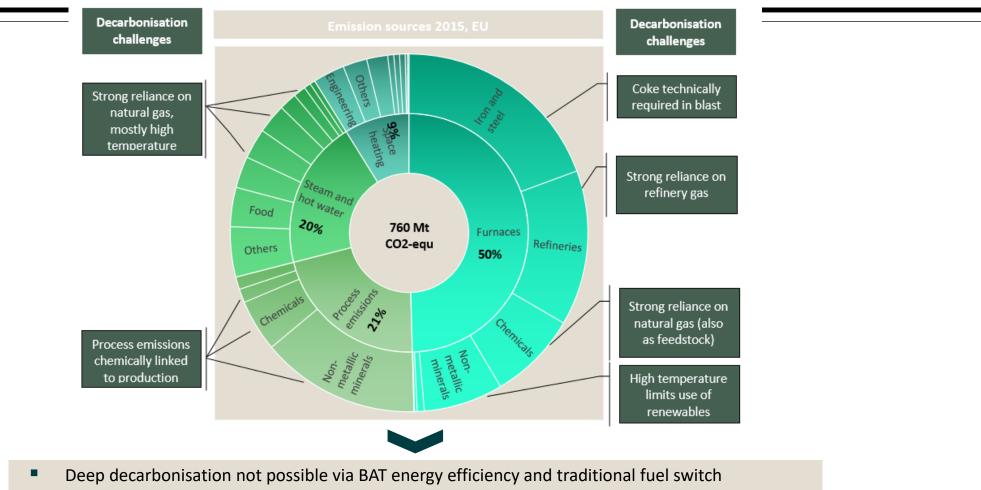
Fraunhofer ISI

OPTIONS FOR ACHIEVING A CLOSE-TO CLIMATE-NEUTRAL EU INDUSTRY AND THEIR IMPLICATIONS


Dr. Andrea Herbst, Dr. Tobias Fleiter, Matthias Rehfeldt EUSEW 2020, Webinar, 08.07.2020

INDUSTRY ACCOUNTS FOR 25% OF **EU** FINAL ENERGY CONSUMPTION

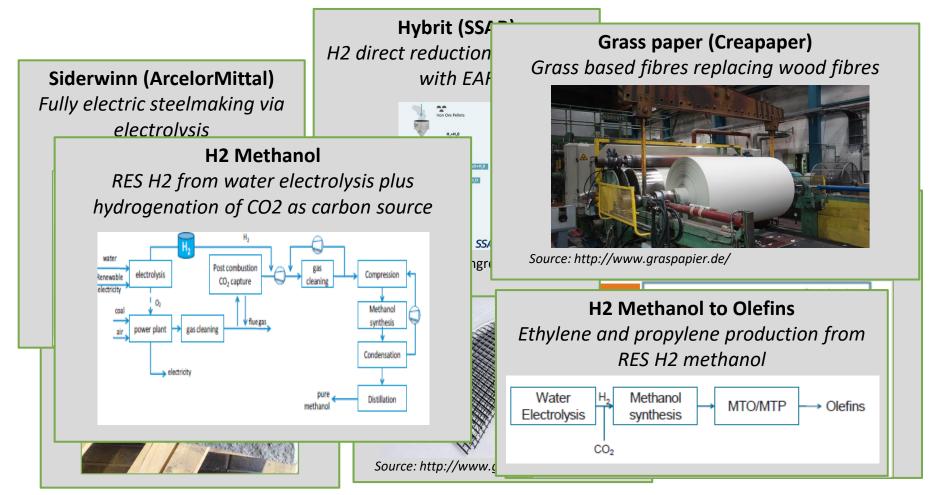
- Dominant energy carriers: gas, electricity, coal and oil
- Current **policy** is **not on the right track to decarbonisation** and deep emission reductions require significant changes in the sector



EU28 INDUSTRIAL FINAL ENERGY DEMAND (2015)

Source: FORECAST

TODAYS AVAILABLE TECHNOLOGIES ARE NOT SUFFICIENT FOR DECARBONISATION

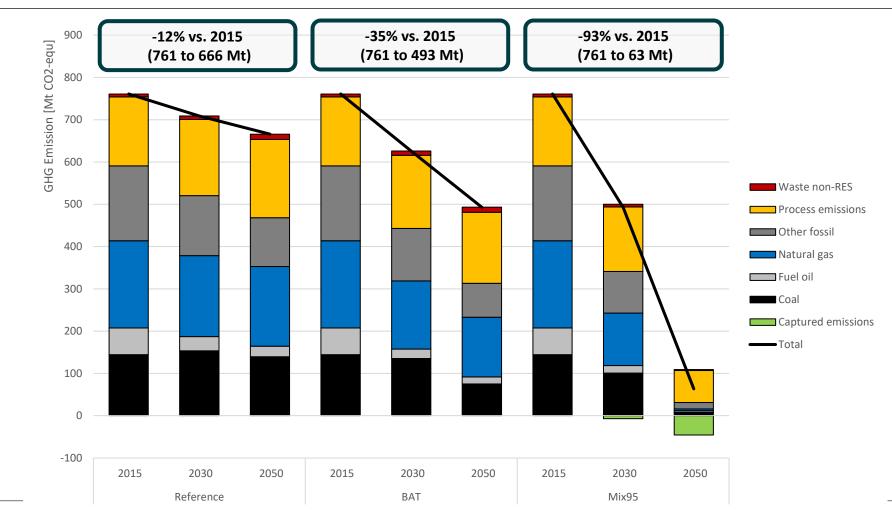


Innovative low-carbon technologies are needed

BREAK-THROUGH INNOVATIONS WITH

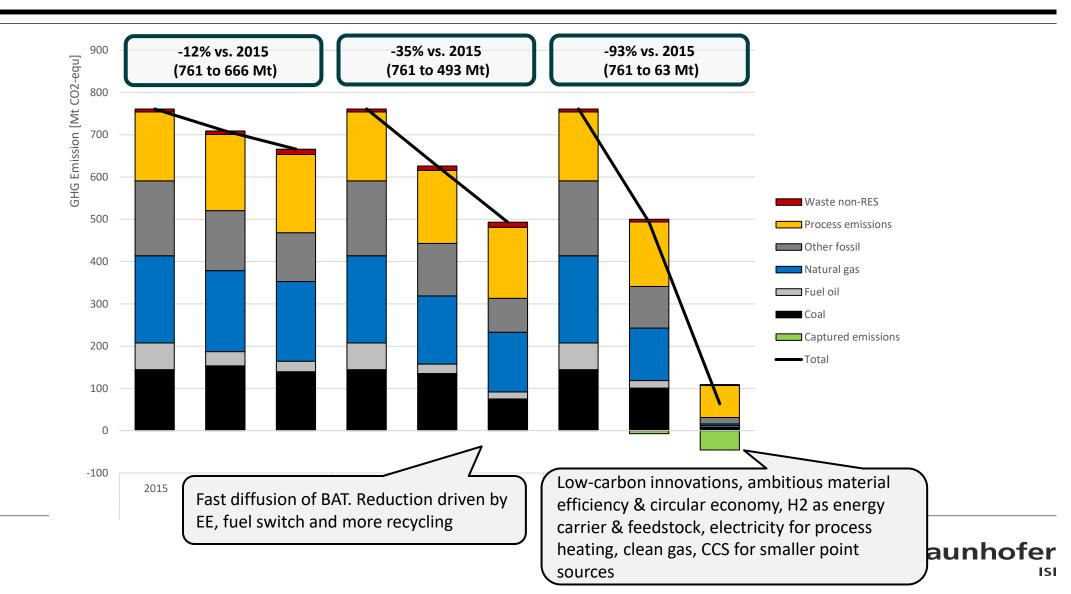
DIFFERENT LEVELS OF MATURITY ARE UNDER DEVELOPMENT

Source: Towards the EU ETS Innovation fund workshops (online available), Dechema 2017

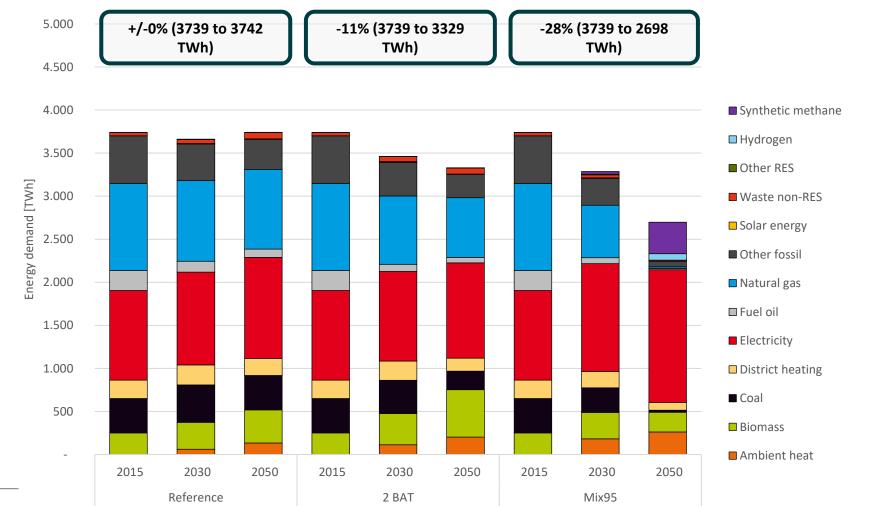


PATHWAY CHARACTERIZATION

BY MITIGATION OPTION

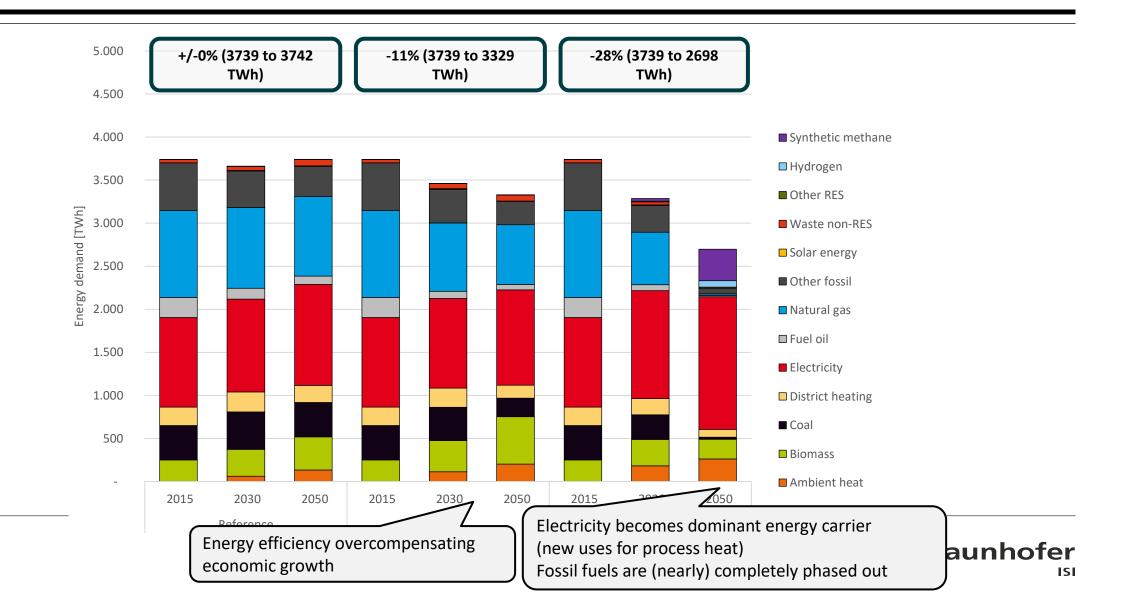

Clusters of mitigation options	REFERENCE	ВАТ	MIX95
Incremental efficiency improvement	Energy efficiency progress according to current policy framework and historical trends.	Complete diffusion of today's best available technologies with regard to energy efficiency where technically applicable	Faster diffusion of incremental process improvements (BAT & INNOV ≥TRL 5).
Fundamental processes improvement energy efficiency, process emissions	-	-	Radical process improvements (INNOV ≥TRL 5)
Fuel switching to RES towards decarbonized electricity and/or hydrogen	Fuel switching driven by energy prices and assumed CO ₂ -price increase	Fuel switching driven by energy prices and assumed CO2-price increase	Stronger fuel switching to power-to- heat and power-to-gas technologies. Radical changes in industrial process technologies drive fuel switch (e.g. switch to hydrogen).
Carbon capture and storage (CCS)	-	-	CCS only for remaining process emissions
Recycling and re-use	Slow increase in recycling rates based on historical trends.	Fast development of recycling	Stronger switch to secondary production.
Material efficiency and substitution	Based on historic trends.	Based on historic trends. Decrease in clinker factor.	Decrease in clinker factor . Increase in material efficiency & substitution.

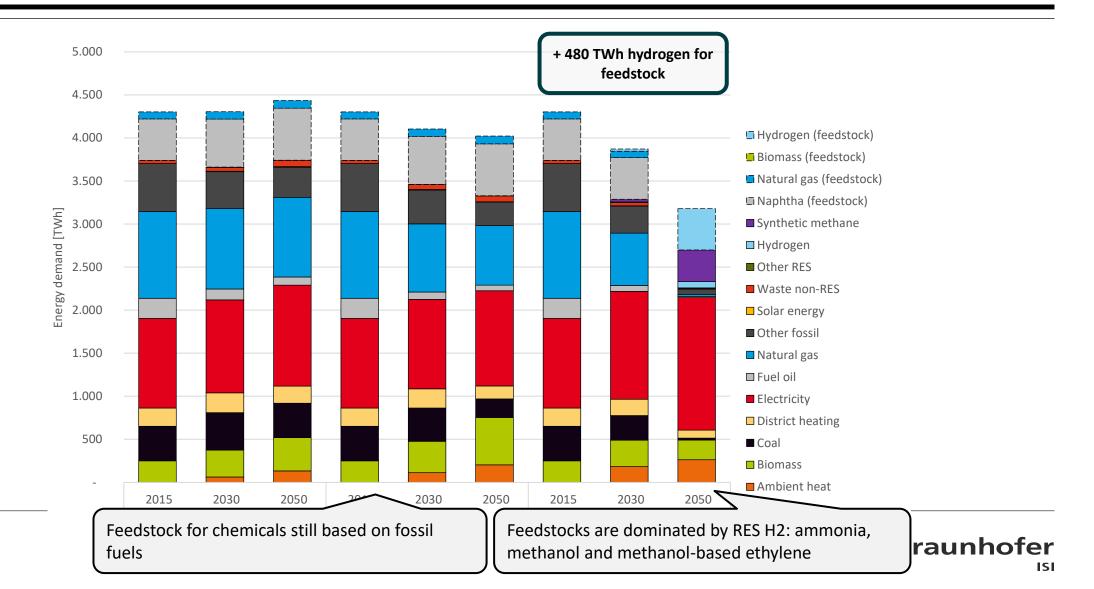
VERY HIGH LEVEL OF AMBITION ENABLES A HIGH REDUCTION IN CO_2 EMISSIONS [EU28]



VERY HIGH LEVEL OF AMBITION ENABLES A HIGH REDUCTION IN CO_2 EMISSIONS [EU28]

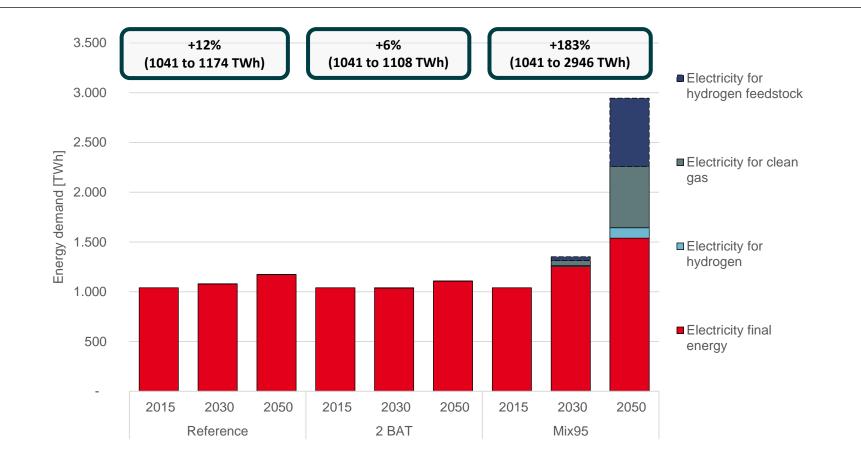
REDUCTION IN FINAL ENERGY DEMAND LESS PRONOUNCED THAN EMISSIONS [EU28]



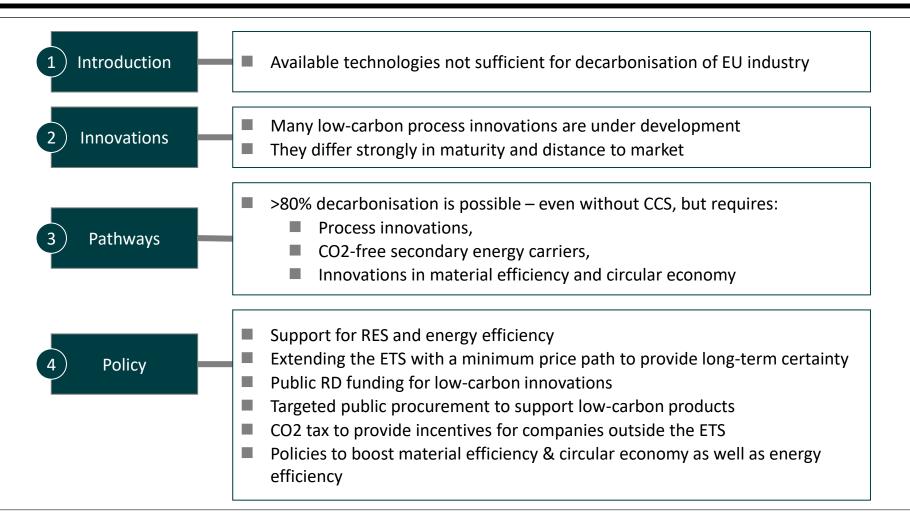

REDUCTION IN FINAL ENERGY DEMAND LESS PRONOUNCED THAN EMISSIONS [EU28]

© Fraunhofer ISI

Seite 43



RES H2 FEEDSTOCK DEMAND CHANGES ENERGY BALANCE BOUNDARIES [EU28]

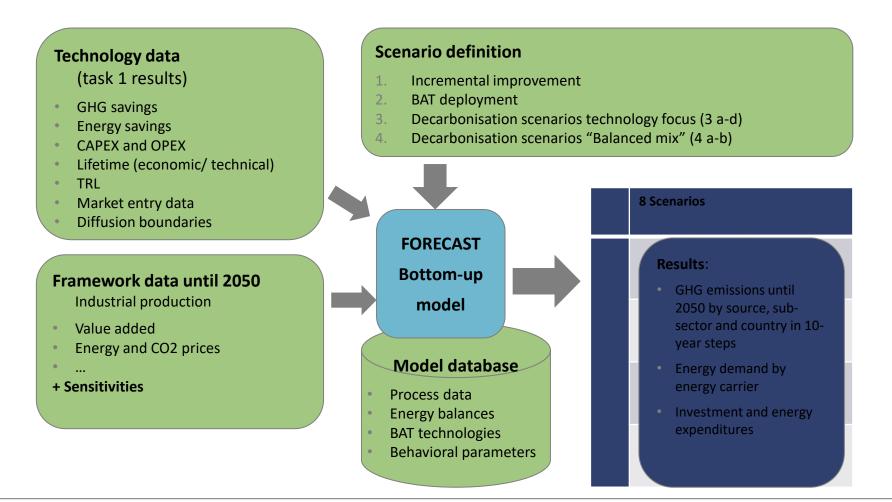

© Fraunhofer ISI Seite 44

LARGE VOLUMES OF RENEWABLE ELECTRICITY WILL BE NEEDED [EU28]

SUMMARY: INNOVATIONS FACILITATE DECARBONISATION OF EU INDUSTRY

MANY THANKS FOR YOUR ATTENTION!

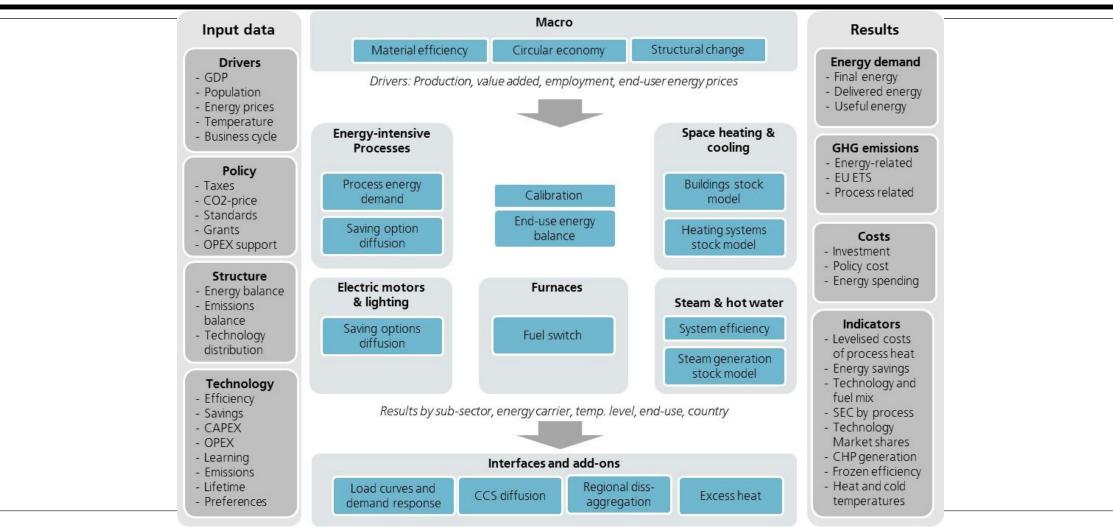
More scenarios and details:


https://www.umweltbundesamt.de/en/publikationen/ CUMATE CHANGE ghg-neutral-eu2050 Fraunhofer GHG-neutral EU2050 – a scenario of an EU with Industrial Innovation: https://ec.europa.eu/clima/sites/clima/files/strategies/ Pathways to deep net-zero greenhouse gas decarbonisation of 2050/docs/industrial_innovation_part_2_en.pdf emissions and its Industry. implications Part 2: Scenario analysis and hways to deep decarbonisation Full report Dr. Andrea Herbst Competence Center Energy Technology and Energy Systems Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Straße 48, 76139 Karlsruhe, Germany Tel.: +49 (0) 721 6809 -439 Umwelt Bundesamt E-Mail: andrea.herbst@isi.fraunhofer.de

http://www.forecast-model.eu

The analysis was executed within the EU project Industrial Innovation: Pathways to deep decarbonisation of Industry funded by the European Commission under the Specific Contract № 340201/2017/761180/ CLIMA.C.I" implementing Framework Contract no. CLIMA.001/FRA/2015/0014

The methodology combines multiple data sources



FORECAST:

BOTTOM-UP SIMULATION MODEL

FORecasting Energy Consumption Analysis and Simulation Tool

MAIN MESSAGES

- *EiiF:* Short term decarbonisation potential in industry can quickly be tapped if regulators set mandatory standards for energy efficient equipment. Why are we hesitating?
- Schneider Electric: The EU needs a policy framework for digitising the European industry in a sustainable manner, ensuring a stronger convergence between sustainability and digital.
- Fraunhofer ISI: Transforming the industrial sector to reach CO2-neutrality by 2050 requires innovative low-carbon production technologies, a comprehensive circular economy and CO2-free energy carriers as well as changes in the political and regulatory framework.

Fraunhofer

#DecarbIndustry #EUSEW2020

PANEL DISCUSSION

Antti Valle DG GROW European Commission

Jan Ciampor DG ENER European Commission

Guido Knoche German Environment Agency (UBA)

Barbara Mariani European Environmental Bureau

DECARBONISING INDUSTRY & THE ICT SECTOR

Q&A WITH PARTICIPANTS

DECARBONISING INDUSTRY & THE ICT SECTOR

PETER HOEDEMAKER President European Industrial Insulation Foundation

Conclusions

DECARBONISING INDUSTRY & THE ICT SECTOR

THANK YOU!